State Electric Vehicle Benefits www.ucsusa.org/state-EV-fact-sheets Appendix: Methodology and assumptions © August 2021 All rights reserved ## Scope Here are the datasets and assumptions used to create the following statistics. These statistics apply to battery electric or plug-in hybrid electric vehicles. Fuel cell electric vehicles were not included in this analysis. EVs cut global warming emissions. Driving an EV in [STATE] produces [X] metric tons of emissions per year compared with [Y] metric tons from the average new gasoline-powered car. Power plant emissions The electricity generation-related emissions values used in our analysis come from the U.S. Environmental Protection Agency's (EPA's) Emissions & Generation Resource Integrated Database (eGRID), which is a comprehensive source of emissions data for every power plant in the United States that provides its generation data to the government. We used to the most up-to-date version of eGRID available at time of publication— factsheets published in 2021 used eGRID2019, which contains plant emissions and generation data from calendar year 2019, and factsheets published in 2019 used eGRID2016, which contains plant emissions and generation data from calendar year 2016. The subregions are groups of plants organized by the EPA, based on Power Control Areas and North American Reliability regions. These groupings reflect which power plants serve which households, and they reasonably approximate the grid mix of electricity used by those households within a subregion. The level of disaggregation of the eGRID subregions allows for more precise calculation of plants' emissions intensities than a national average, as regional variations in grid mix are taken into account. For this reason, eGRID was chosen over other data sources that had the same detailed plant information but fewer subregions. The actual grid mix of a household's electricity is specific to the individual utilities serving each household, but specific grid-mix data are not readily available for most utilities and therefore were not used in the study. eGRID's methodology treats the subregions as closed systems, calculating the emissions intensity of generation for each one based on the emissions intensities of the plants it contains. This methodology ignores imports and exports of electricity between subregions, which harms the accuracy of the regional emissions estimates. Therefore, the 26 subregions are recommended by eGRID's designers as the level of disaggregation best suited for estimating electricity use-related emissions, as they achieve the best balance between the precision gained by disaggregation and the accuracy lost by omitting imports and exports. ## Transmission loss factors The eGRID generation emission rates do not account for transmission and distribution losses between the power plant and the household. To calculate emissions per unit of energy used (rather than energy produced), we increase the emissions rates using grid loss factors as given in eGRID. #### Upstream emissions factors The eGRID subregion emissions rates include only those emissions produced at the plant generating the electricity, and they exclude upstream emissions resulting from the mining and transport of the power plant feedstock. Therefore, we calculated a feedstock emissions rate for each subregion; this rate depends on which fuel types the corresponding power plants use. Each fuel type has a unique upstream emissions rate, which we obtained from a publicly available life cycle emissions model: GREET (2017 release for factsheets released in 2019 and 2020 release for factsheets released in 2021), developed by the Argonne National Laboratory. The percentage of generation from each fuel type in a subregion was then obtained from eGRID. For each subregion, the fuel-type emissions rates are multiplied by the share of generation they represent in that subregion; the sum of these products is the subregion's feedstock emissions rate. Most fuel types in GREET correspond directly to a fuel type in eGRID, but there were a few exceptions. A very small share of generation in eGRID subregions corresponds to a fuel type labeled "generic fossil"; for this fuel type, the emissions rate from GREET for natural gas was chosen as a conservative guess, given that its upstream emissions value is higher than those of coal and oil (the other two fossil fuels with known feedstock emissions rates in GREET). An even smaller share of generation in eGRID subregions comes from unknown sources; for this category of fuel type, the feedstock emissions rate is the generation-weighted average of the upstream emissions rates for the other fuel types. Conversion of g/kWh to metric tons CO₂e emissions We multiplied the estimated emissions intensity values (gCO₂e/kWh) and a sales-weighted EV average efficiency of 0.3385 kWh/mile, resulting in a gCO₂e/mile estimate. Annual emissions rate was estimated using an average annual mileage of 11,440 miles per year. Gasoline vehicle emissions are estimated to be 10958 gCO₂e/gallon based on the GREET carbon intensity of California reformulated and reformulated gasoline, based on a weighted average of 11 percent California gasoline and 89 percent non-California gasoline. This fuel carbon intensity was used with the average 2016 new gasoline vehicle efficiency of 25.6 miles/gallon (EPA 2016) and 11,440 miles/year driving to estimate annual new gasoline vehicle global warming emissions. Our 2021 analysis used updated assumptions for US EV efficiency (0.317 kWh/mi), average new passenger vehicle fuel economy (25.7 mpg), and lifecycle carbon intensity of gasoline (10662 gCO₂e/gallon). ## Rural EV drivers save the most on fuel. On average, rural [STATE] drivers could save [\$X] by switching from gasoline to electricity. Annual fuel savings were estimated at the county level for an average driver switching from a passenger car to an electric vehicle (EV). For our 2019 analysis, the driver is assumed to switch from a gas-powered passenger car with a fuel efficiency of 25.2 miles per gallon (average for new passenger cars in 2017) to a battery-electric vehicle with an efficiency of 0.32 kWh/mile. For our 2021 analysis, the driver is assumed to switch from a gas-powered light-duty passenger vehicles with a fuel efficiency of 24.9 miles per gallon (average for new passenger cars in 2019) to a battery-electric vehicle with an efficiency of 0.317 kWh/mile. Note that there are differing definitions of what constitutes a rural area. In this analysis, rural drivers are defined to be those who live in counties within the two lowest population density groups (one group up to 99 persons per square mile, and the second group from 100 to 499 persons per square mile). Annual fuel savings were first estimated for each county within the two lowest population density groups. These savings were then averaged over the two groups to obtain an overall annual fuel savings estimate for rural drivers in the state. Annual vehicle miles driven (VMT) for each county was determined by identifying which population density group the county is located in. The annual VMT was determined by mapping the county into one of the 72 'baskets' for 8 typical population density areas in 9 census divisions (see assumptions used in our 2019 and 2021 analyses in Table 1 and Table 2, respectively). For our 2019 analysis, gasoline prices are 2018 state averages. EV drivers were assumed to charge their vehicles at home so electricity prices are 2017 residential retail rates in the state. For our 2021 analysis, gasoline prices are 6/25/2021 state averages, assumed to be representative of the fluctuating but generally high gasoline prices. Electricity prices are 2019 residential retail rates in the state. It should be noted that many areas have time-of-use (TOU) rates, which are usually lower than the state average, so the estimates presented here are conservative, and fuel savings could be higher. Since gasoline and electricity prices were assumed to be state-level averages, and since constant fuel economies and EV efficiencies are assumed, the only factor that determines the difference between fuel savings in different counties is the VMT. Therefore, if all other factors remain constant, annual fuel savings for each driver increases proportionally with annual VMT. Table 1 – Annual miles driven by an average driver in 8 typical population density areas for each of the 9 census divisions (2019) | Persons per square mile | New
England | Middle
Atlantic | East
North
Central | West
North
Central | South
Atlantic | East
South
Central | West
South
Central | Mountain | Pacific | |-------------------------|----------------|--------------------|--------------------------|--------------------------|-------------------|--------------------------|--------------------------|----------|---------| | 0-99 | 13634 | 13251 | 14347 | 15934 | 14569 | 15337 | 14394 | 13847 | 11666 | | 100-499 | 14491 | 12816 | 14224 | 15324 | 13189 | 13389 | 12574 | 11498 | 12144 | | 500-999 | 11924 | 11424 | 12830 | 15862 | 13016 | 13258 | 12954 | 11119 | 10133 | | 1,000-1,999 | 11506 | 11385 | 11362 | 11741 | 12168 | 11764 | 13373 | 11358 | 11223 | | 2,000-3,999 | 10737 | 11260 | 11804 | 10739 | 10576 | 14065 | 12378 | 9621 | 10494 | | 4,000-9,999 | 10014 | 10586 | 10593 | 11729 | 11165 | 10014 | 11464 | 10765 | 10006 | | 10,000-24,999 | 6735 | 7840 | 9203 | 7978 | 10103 | 1735 | 12615 | 10905 | 10273 | | 25,000-999,999 | 3441 | 4721 | 6676 | 6916 | 8758 | | 13062 | 24988 | 8002 | Table 2 – Annual miles driven by an average driver in 8 typical population density areas for each of the 9 census divisions (2021) | Persons per square mile | New
England | Middle
Atlantic | East North
Central | West
North
Central | South
Atlantic | East South
Central | West
South
Central | Mountain | Pacific | |-------------------------|----------------|--------------------|-----------------------|--------------------------|-------------------|-----------------------|--------------------------|----------|---------| | 0-99 | 12380 | 13538 | 14285 | 16232 | 14480 | 15051 | 14501 | 12477 | 11658 | | 100-499 | 14078 | 12732 | 13587 | 16040 | 12774 | 13511 | 12755 | 13371 | 11000 | | 500-999 | 11857 | 10759 | 12971 | 11857 | 13236 | 12964 | 13008 | 11302 | 11660 | | 1,000-1,999 | 11879 | 11517 | 12016 | 12271 | 12134 | 11872 | 13289 | 11785 | 11090 | | 2,000-3,999 | 10209 | 11650 | 11773 | 11217 | 10641 | 13939 | 11763 | 10067 | 10372 | | 4,000-9,999 | 11061 | 9864 | 10001 | 10779 | 10846 | 9006 | 11721 | 10600 | 10353 | | 10,000-24,999 | 6160 | 8652 | 7464 | 9361 | 10795 | - | 11500 | 8661 | 9404 | | 25,000-999,999 | 3295 | 4323 | 6863 | 3650 | 7461 | - | 8552 | 9124 | 7068 | Note: Obtained from the NHTS variable HTPPOPDN - Category of population density (persons per square mile) in the census tract of the household's home location. The annual average VMTs listed are subject to periodic updates by the National Housing Travel Survey. # City drivers save money too. Charging an EV at home in [CITY] is like paying \$[X] per gallon of gasoline. Rate design and costs were obtained via the U.S. Department of Energy's <u>Utility Rate Database</u> with confirmation using the websites of the electric service providers. The marginal volumetric rate including adjustments (taxes and fees) was determined for each service provider. Fixed charges (meter charges) were not included. Seasonal rates were averaged based on the proportional length of the season, with the assumption that EV electric use occurs at a constant rate throughout the year. Demand charges were added if they were applied at all hours, assuming 30A, 240V (7.2 kW) charging with 1.6 hours of charging required per day (12,700 miles per year, 0.325 kWh per mile). If demand charges were applied only on peak hours, then no demand charges were added; it is assumed that charging would be avoided during peak periods. Tiered non-TOU rates assumed that EV charging was above the average EIA household consumption or over 100 percent of baseline (if data were available). EV monthly charging was assumed to require 344 kWh/month (11.3 kWh/day). When both tiered and non-tiered TOU/EV rates were available, the non-tiered rates were used. If multiple TOU/EV rates were available, the rate with the lowest nighttime rate was chosen. Rates that required installation of an additional meter were not considered due to the difficulty in quantifying the expense and charges associated with installation and use of a second meter. Rates for deregulated markets were estimated by selecting representative rate plans with a 12-month contract period. Because the rate structures in deregulated markets can vary significantly between electricity providers, rates available in these markets may result in lower electricity costs than those presented here. For each rate where a per kWh charge (and per KW demand charge, if applicable) was known, the \$/GGE equivalent was calculated using (electricity cost) x (EV efficiency) x (1/gasoline efficiency), where the EV efficiency was the sales-weighted US EV efficiency (0.325 kWh/mi) and miles per gallon were 25.6, the average new vehicle efficiency for all MY2016 vehicles. Our 2021 analysis used updated assumptions for US EV efficiency (0.317 kWh/mi) and average new passenger vehicle fuel economy (25.7 mpg). Note that the GGE rate for Newark was based on an average for NJ GGE rates, since data for Newark was unavailable. The price for gasoline in each city was determined using data from GasBuddy (www.gasbuddy.com/Charts) on the average cost of regular gasoline, using prices on October 24, 2017 for cities with data from 2017 (see Table 2 below); prices on October 1, 2019 for Des Moines, IA; prices on October 10, 2019 for Anchorage, AK; prices on July 6, 2021 for Manchester, NH and Charleston, WV. *Table 2 – Utilities, rate type and cost of gallon of gas equivalent cited for each city.* | City | State | GG | E | Electric Utility | Rate type | Year | |------------------|-------|----|------|---|-----------|------| | Anchorage | AK | \$ | 1.58 | Municipal Light & Power | Standard | 2019 | | Tucson | AZ | \$ | 0.49 | Tucson Electric Power | EV | 2017 | | Sacramento | CA | \$ | 0.60 | Sacramento Municipal Utility District | EV | 2017 | | Colorado Springs | CO | \$ | 0.59 | Colorado Springs Utilities | TOU | 2017 | | Bridgeport | CT | \$ | 1.41 | United Illuminating Company | TOU | 2017 | | Washington, D.C. | DC | \$ | 0.85 | Pepco | TOU | 2017 | | Wilmington | DE | \$ | 0.41 | Delmarva Power | TOU | 2017 | | Miami | FL | \$ | 0.52 | Florida Power & Light Company | TOU | 2017 | | Atlanta | GA | \$ | 0.32 | Georgia Power | EV | 2017 | | Honolulu | HI | \$ | 1.80 | Hawaiian Electric Company | TOU | 2017 | | Des Moines | IA | \$ | 0.70 | MidAmerican Energy Company | TOU | 2019 | | Chicago | IL | \$ | 0.70 | ComEd | Standard | 2017 | | Indianapolis | IN | \$ | 0.30 | Indianapolis Power & Light Company | EV | 2017 | | Wichita | KS | \$ | 0.50 | Westar Energy | TOU | 2017 | | Louisville | KY | \$ | 0.61 | Louisville Gas and Electric | TOU | 2017 | | New Orleans | LA | \$ | 0.57 | Entergy New Orleans | Standard | 2017 | | Boston | MA | \$ | 1.30 | Eversource | TOU | 2017 | | Baltimore | MD | \$ | 0.81 | Baltimore Gas & Electric Company | TOU | 2017 | | Portland | ME | \$ | 0.99 | Central Maine Power | TOU | 2017 | | Detroit | MI | \$ | 0.85 | DTE Energy Company | TOU | 2017 | | Minneapolis | MN | \$ | 0.25 | Xcel Energy | TOU | 2017 | | Kansas City | MO | \$ | 0.82 | Kansas City Power & Light (Kansas) | Standard | 2017 | | Raleigh | NC | \$ | 0.41 | Piedmont Electric Membership
Corporation | TOU | 2017 | | Omaha | NE | \$ | 0.76 | Omaha Public Power District | Standard | 2017 | | Manchester | NH | \$ | 0.93 | Eversource | TOU | 2021 | | Newark | NJ | \$ | 1.37 | PSE&G | Standard | 2019 | | City | State | GGE | | Electric Utility | Rate type | Year | |----------------|-------|-----|------|--|-----------|------| | Albuquerque | NM | \$ | 0.56 | Public Service Company of New
Mexico | TOU | 2017 | | Las Vegas | NV | \$ | 0.41 | NV Energy | TOU | 2017 | | New York | NY | \$ | 0.36 | ConEdison | TOU | 2017 | | Cleveland | ОН | \$ | 0.43 | Cleveland Public Power | Standard | 2017 | | Oklahoma City | OK | \$ | 0.54 | Oklahoma Gas & Electric Co. | TOU | 2017 | | Portland | OR | \$ | 0.72 | Portland General Electric | TOU | 2017 | | Philadelphia | PA | \$ | 0.58 | PECO Energy Company | Standard | 2017 | | Providence | RI | \$ | 1.32 | National Grid | Standard | 2017 | | Greenville | SC | \$ | 0.49 | Duke Energy | TOU | 2017 | | Sioux Falls | SD | \$ | 0.50 | Xcel Energy South Dakota | TOU | 2017 | | Memphis | TN | \$ | 0.63 | Memphis Light, Gas and Water
Division | TOU | 2017 | | Dallas | TX | \$ | 0.57 | Reliant | Standard | 2017 | | Salt Lake City | UT | \$ | 0.59 | Rocky Mountain Power | EV | 2017 | | Virginia Beach | VA | \$ | 0.50 | Dominion Virginia Power | EV | 2017 | | Burlington | VT | \$ | 0.90 | Burlington Electric Department | TOU | 2017 | | Spokane | WA | \$ | 0.78 | Avista Corporation | Standard | 2017 | | Milwaukee | WI | \$ | 0.75 | WE Energies | TOU | 2017 | | Charleston | WV | \$ | 1.00 | Appalachian Power | Standard | 2021 | # Interest in EVs is quickly growing. EV sales grew [X] percent in [STATE] from [Y] to 2018, reaching [Z] sold by the end of 2018. EV sales and sales growth rates based on new car registration data from IHS Markit (non-public dataset). ### REFERENCES Alaska Power & Telephone. 2019. AMP-UP EV Program. Port Townsend, WA. Online at https://www.aptalaska.com/amp-up/, accessed November 5, 2019. American Automobile Association (AAA). 2017. *Your driving costs: How much are you paying to drive?* Heathrow, FL. Online at https://exchange.aaa.com/wp-content/uploads/2017/08/17-0013_Your-Driving-Costs-Brochure-2017-FNL-CX-1.pdf, accessed March 13, 2019. Appalachian Power. 2021. EV charging station rules. Charleston, WV. Online at https://takechargewv.com/ev-charging-station-rules, accessed August 3, 2021. Argonne National Laboratory (ANL). 2017. GREET model: The greenhouse gases, regulated emissions, and energy use in transportation model. Argonne, IL. Online at https://greet.es.anl.gov, accessed March 13, 2019. Argonne National Laboratory (ANL). 2020. GREET model: The greenhouse gases, regulated emissions, and energy use in transportation model. Argonne, IL. Online at https://greet.es.anl.gov, accessed August 3, 2021. Berckmans, G., M. Messagie, J. Smekens, N. Omar, L. Vanhaverbeke, and J. Van Mierlo. 2017. Cost projection for state-of-the-art lithium-ion batteries for electric vehicles up to 2030. Brussels: MOBI Research Group, Vrije Universiteit Brussel. Online at www.mdpi.com/1996-1073/10/9/1314/pdf, accessed March 14, 2019. Cass County Electric Cooperative (CCEC). 2019. Electric Vehicles. Fargo, ND. Online at https://www.kwh.com/content/electric-vehicles, accessed November 5, 2019. District of Columbia Office of Tax and Revenue (OTR). 2014. Alternative Fuel Vehicle Infrastructure and Conversion Credits FAQs. Washington, DC. Online at https://otr.cfo.dc.gov/publication/alternative-fuel-vehicle-infrastructure-and-conversion-credits-faqs, accessed November 5, 2019. Entergy eTech. 2019. Electric Vehicles - Entergy's eTech program. New Orleans, LA. Online at https://entergyetech.com/electric-vehicles/, accessed November 5, 2019. Environmental Protection Agency (EPA). 2016. Emissions & generation resource integrated database (eGRID). Washington, DC. Online at www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid, accessed March 14, 2019. Environmental Protection Agency (EPA). 2017. Health and environmental effects of particulate matter (PM). Washington, DC. Online at www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm, accessed March 13, 2019. Environmental Protection Agency (EPA). 2018. Inventory of U.S. greenhouse gas emissions and sinks. Washington, DC. Online at www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks, accessed March 14, 2019. Environmental Protection Agency (EPA). 2021. Emissions & generation resource integrated database (eGRID). Washington, DC. Online at www.epa.gov/egrid, accessed August 3, 2021. GasBuddy. 2019. Gas price charts. Boston, MA. Online at www.gasbuddy.com/Charts, accessed November 5, 2019. GasBuddy. 2021. State gas price averages. Boston, MA. Online at https://web.archive.org/web/20210706211553/https://gasprices.aaa.com/state-gas-price-averages/, accessed July 6, 2021. Gatti, D. 2018. Rural drivers can save the most from clean vehicles. Cambridge, MA: Union of Concerned Scientists. Blog post, December 13. Online at https://blog.ucsusa.org/daniel-gatti/clean-vehicles-save-rural-drivers-money, accessed March 13, 2019. Hickenlooper, J., Otter, C.L., Bullock, S., Mead, M., Herbert, G.R., and S. Martinez. 2017. Governors of Colorado, Idaho, Montana, Nevada, New Mexico, Utah and Wyoming Sign MOU to Plan Regional Electric Vehicle Corridor for the West. Press release, October 4. Online at https://deq.mt.gov/Portals/112/Energy/Documents/FINAL_EV_Corridor_%20Press_Release100317.pdf?ver=2017-10-10-085946-897, accessed November 5, 2019. Nealer, R., D. Reichmuth, and D. Anair. 2015. *Cleaner cars from cradle to grave: How electric cars beat gasoline cars on lifetime global warming emissions*. Cambridge, MA: Union of Concerned Scientists. Online at www.ucsusa.org/clean-vehicles/electric-vehicles/life-cycle-ev-emissions, accessed March 28, 2019. New Hampshire Electric Co-op (NHEC). 2021. Plug-in to your Future-Drive Electric! Plymouth, NH. Online at https://www.nhec.com/drive-electric/, accessed July 6, 2021. Plug In America (PIA). 2019. State incentives. Online at https://pluginamerica.org/why-go-plug-in/state-federal-incentives, accessed March 14, 2019. Reichmuth, D. 2017. *Going from pump to plug: Adding up the savings from electric vehicles*. Cambridge, MA: Union of Concerned Scientists. Online at www.ucsusa.org/clean-vehicles/electric-vehicles/ev-fuel-savings, accessed March 13, 2019. Reichmuth, D. 2018. New data show electric vehicles continue to get cleaner. Cambridge, MA: Union of Concerned Scientists. Blog post, March 8. Online at https://blog.ucsusa.org/dave-reichmuth/new-data-show-electric-vehicles-continue-to-get-cleaner, accessed March 13, 2019. Reichmuth, D. 2021. Plug in or gas up? Why driving on electricity is better from gasoline. Cambridge, MA: Union of Concerned Scientists. Blog post, June 7. Online at https://blog.ucsusa.org/dave-reichmuth/plug-in-or-gas-up-why-driving-on-electricity-is-better-than-gasoline/, accessed July 6, 2021. State of Vermont Agency of Transportation (VTrans). 2019. Electric Vehicle Incentive Program. Montpelier, VT. Online at https://vtrans.vermont.gov/planning/projects-programs/electric-vehicles, accessed November 5, 2019. Union of Concerned Scientists (UCS). 2016. Infographic: California drivers demand electric cars. Cambridge, MA. Online at www.ucsusa.org/clean-vehicles/electric-vehicles/electric-vehicles/california-electric-cars, accessed March 14, 2019. Union of Concerned Scientists (UCS). 2019. State Electric Vehicle Benefits, Appendix: Methodology and assumptions. Cambridge, MA. Online at www.ucsusa.org/state-EV-fact-sheets, accessed November 5, 2019. Union of Concerned Scientists (UCS). 2021. State Electric Vehicle Benefits, Appendix: Methodology and assumptions. Cambridge, MA. Online at www.ucsusa.org/state-EV-fact-sheets, accessed August 3, 2021. Union of Concerned Scientists (UCS) and Consumer Reports Advocacy (CR). 2019. Electric vehicle survey findings and methodology. Cambridge, MA and Yonkers, NY. Online at www.ucsusa.org/resources/surveying-consumers-electric-vehicles, accessed August 3, 2021.